

RAPPORTO SULLA QUALITA' DELL'ARIA DELLA REGIONE ABRUZZO

ANNO 2017

RAPPORTO SULLA QUALITÀ DELL'ARIA DELLA REGIONE ABRUZZO

ANNO 2017

Arta Abruzzo - Distretto Provinciale di Chieti Sezione Emissioni in atmosfera e Qualità dell'aria Via Domenico Spezioli, 52 66100 Chieti

Responsabile Sezione: Sebastiano Bianco

Direttore del Distretto: Dott.ssa Giovanna Mancinelli

ALLA REDAZIONE DI QUESTO DOCUMENTO
HANNO PARTECIPATO TUTTE LE STRUTTURE DELL'ARTA ABRUZZO

L'INQUINAMENTO ATMOSFERICO E LA NORMATIVA SUGLI INQUINANTI

Il Decreto Legislativo n°155 del 13/08/2010 ha recepito la direttiva quadro sulla qualità dell'aria 2008/50/CE, istituendo a livello nazionale un quadro normativo unitario in materia di valutazione e di gestione della qualità dell'aria ambiente.

In esso vengono riportate anche alcune definizioni. In particolare si intende per <u>aria ambiente</u> l'aria esterna presente nella troposfera, ad esclusione di quella presente nei luoghi di lavoro.

Per <u>inquinante atmosferico</u> si intende qualsiasi sostanza presente nell'aria ambiente che può avere effetti dannosi sulla salute umana o sull'ambiente nel suo complesso.

La valutazione della qualità dell'aria è fondata su una "rete di misura". Le misurazioni in siti fissi, devono essere rispondenti per scelta dei siti e per tipologia di strumentazioni alle disposizioni fissate dallo stesso Decreto Legislativo n. 155 del 2010.

Il Decreto stabilisce anche il tipo di inquinanti, le modalità di acquisizione dei dati, la periodicità e il grado di affidabilità richiesto dalle misurazioni.

Per quanto attiene al posizionamento delle centraline, si applicano le seguenti definizioni:

- a) <u>stazioni di misurazione di traffico</u>: stazioni ubicate in posizione tale che il livello di inquinamento sia influenzato prevalentemente da emissioni da traffico;
- b) <u>stazioni di misurazione di fondo</u>: stazioni ubicate in posizione tale che il livello di inquinamento non sia influenzato prevalentemente da emissioni da specifiche fonti (industrie, traffico, riscaldamento) ma dal contributo integrato di tutte le fonti.

Anche i siti in cui vengono posizionate le centraline si dividono in <u>urbani</u> (inseriti in aree edificate in continuo, o almeno in modo predominante) <u>suburbani</u> (inseriti in aree largamente edificate in cui sono presenti sia zone edificate, sia zone non urbanizzate), rurali.

Nella tabella sottostante viene riportata in forma schematica la classificazione delle tipologie di ubicazione delle stazioni di misura.

ORIGINE INQUIN DENSITA' ABITATIVA	TRAFFICO	FONDO (BACKGROUND)	INDUSTRIALE
URBANO	TU	BU	UI
SUBURBANO	TS	BS	SI
RURALE	TR	BR	RI

Il confine tra le varie definizioni non è sempre preciso, talvolta può accadere che una stazione, individuata con determinate caratteristiche al momento del suo posizionamento, a seguito di interventi per esempio sulla circolazione, o anche urbanistici, possa essere successivamente definita in modo diverso, o addirittura non essere più rispondente ai requisiti definiti dalla norma.

In tutti i casi i siti di misura devono essere individuati in modo da fornire dati sui livelli degli inquinanti che siano "rappresentativi dell'esposizione della popolazione".

L'esposizione <u>media</u> della popolazione è valutata attraverso le stazioni di misurazione di fondo nei siti urbani (BU).

2.1 SOSTANZE INQUINANTI ED EFFETTI SULL'UOMO E SULL'AMBIENTE

Le sostanze che possono alterare la qualità dell'atmosfera si distinguono in naturali e antropiche, ovvero provocate dalle attività umane.

Le prime sono causate dalla sabbia dei deserti, dall'erosione del suolo o dalle eruzioni vulcaniche. Le sostanze disperse attraverso questi fenomeni vengono trasportate dal vento fino a migliaia di chilometri di distanza.

Le sostanze di origine antropica sono senza dubbio più influenti e sono generalmente provocate dalla combustione, quindi dai motori a scoppio delle automobili e dalle attività industriali, ma anche dagli impianti di riscaldamento.

Le sostanze di origine antropica presenti in aria sono molteplici e spesso ricercatori di tutto il mondo ne individuano di nuove. Il Decreto legislativo 155/2010 (come detto attuativo di una direttiva europea) definisce quali, di tutti gli inquinanti presenti in atmosfera, devono essere misurati sul territorio nazionale. Il decreto stabilisce per questi inquinanti anche i valori limite per le concentrazioni nell'aria ambiente.

Le sostanze da controllare sono: Biossido di Zolfo, Biossido di Azoto, Benzene, Monossido di Carbonio, Piombo, PM10, PM 2,5.

Il decreto fissa inoltre i valori obiettivo, gli obiettivi a lungo termine, le soglie di allarme e di informazione per l'Ozono, e i valori obiettivo per le concentrazioni nell'aria ambiente di Arsenico, Cadmio, Nichel e Benzo(a)pirene.

Il decreto stabilisce che per le zone in cui i livelli di inquinanti presenti nell'aria ambiente superano un valore limite o un valore-obiettivo, le regioni devono provvedere a predisporre piani per la qualità dell'aria, al fine di conseguire il relativo valore limite o valore-obiettivo predefinito. Per le aree, invece, in cui i livelli di inquinanti sono inferiori ai valori limite, le regioni devono adottare le misure necessarie per preservare la migliore qualità dell'aria che risulti compatibile con lo sviluppo sostenibile.

Più in dettaglio, le caratteristiche degli inquinanti previsti dal Decreto 155/2010 sono:

Monossido di carbonio (CO)

Espresso in milligrammi per metro cubo d'aria, è l'inquinante gassoso più abbondante in atmosfera; gas inodore ed incolore, viene generato durante la combustione di materiali organici, quando la quantità di Ossigeno è insufficiente per una combustione perfetta. La principale sorgente di CO è rappresentata dal traffico veicolare (circa l'80% delle emissioni mondiali); la quantità di CO emessa dagli scarichi dei veicoli è strettamente connessa alle condizioni di funzionamento del motore – con motore al minimo ed in fase di decelerazione (condizioni tipiche di traffico urbano intenso e rallentato), si registrano concentrazioni più elevate.

<u>Danni causati</u>: Il CO ha la proprietà di fissarsi alla emoglobina del sangue, per formare la carbossiemoglobina, impedendo così il normale trasporto di Ossigeno nelle varie parti del corpo.

Biossido di azoto (NO₂)

Espresso in microgrammi per metro cubo d'aria, si presenta come un gas di colore rosso-bruno dall'odore forte e pungente. Si può ritenere uno degli inquinanti atmosferici più pericolosi, sia per la sua natura irritante, sia perché in condizione di forte irraggiamento solare provoca reazioni fotochimiche secondarie che creano altre sostanze inquinanti (smog fotochimico). E' un prodotto di tutti i processi di combustione e quindi proveniente dagli impianti termici sia domestici che industriali, alimentati dai vari combustibili, e da tutti i veicoli a motore. Un contributo alla sua formazione è dato anche dall'Ozono per reazione con il Monossido di azoto.

<u>Danni Causati</u>: In relazione alle sue caratteristiche di gas tossico irritante per le mucose e responsabile di alcune patologie a carico dell'apparato respiratorio (bronchiti, allergie, irritazioni), come il CO, il NO₂ agisce sull'emoglobina, ossidando il ferro in essa contenuto, che perde la capacità di trasportare ossigeno.

Biossido di zolfo (SO₂)

In natura viene disperso dalle eruzioni vulcaniche. Dall'uomo attraverso le combustioni di carburanti che contengono zolfo, principalmente dalle industrie metallurgiche, inceneritori, impianti di riscaldamento, nella produzione della plastica e dalle centrali termoelettriche.

<u>Danni Causati</u>: causa irritazioni a pelle e occhi, nonché problemi alle vie respiratorie, fino a portare all'asfissia in caso di dosi eccessive.

Ozono (O₃)

Espresso in microgrammi per metro cubo d'aria, questa sostanza non ha sorgenti dirette; esso si forma all'interno di un ciclo di reazioni fotochimiche che coinvolgono in particolare gli Ossidi di Azoto ed i Composti Organici Volatili. Gas altamente reattivo, di odore pungente e di colore blu ad elevate concentrazioni, è dotato di elevato potere ossidante. L'Ozono stratosferico si concentra ad una altezza compresa tra i 30 ed i 50 km dal suolo e protegge la superficie terrestre dalle radiazioni ultraviolette emesse dal sole che sarebbero dannose per la vita degli esseri viventi; la sua assenza nella stratosfera è chiamata generalmente "buco dell'Ozono

Al livello del suolo la molecola di ozono si forma quando altri inquinanti, principalmente ossidi di azoto e composti organici volatili, reagiscono a causa della presenza della radiazione solare.

Le sorgenti di questi inquinanti detti "precursori" dell'ozono sono di tipo antropico (i veicoli a motore, le centrali termoelettriche, le industrie, i solventi chimici, i processi di combustione etc.), e di tipo naturale, quali boschi e foreste, che emettono i "terpeni" sostanze organiche volatili molto reattive.

Quindi, nella bassa atmosfera, l'ozono è un agente inquinante non direttamente prodotto dall'attività dell'uomo, ma è originato dalle reazioni fotochimiche di inquinanti primari (ossidi di azoto e composti organici volatili). Per tale motivo, l'**ozono** è definito un **inquinante secondario**.

A differenza degli altri inquinanti, raggiunge le concentrazioni più elevate generalmente nelle stazioni cosiddette di fondo, ovvero rurali e di quota, nei mesi più caldi dell'anno e nelle ore di massimo irraggiamento solare.

<u>Danni Causati</u>: Concentrazioni relativamente basse di Ozono possono creare effetti quali irritazioni alla gola ed alle vie respiratorie e bruciore agli occhi; concentrazioni superiori possono provocare alterazioni delle funzioni respiratorie ed aumento della frequenza di attacchi asmatici. L'Ozono è anche responsabile di danni alla vegetazione; talvolta può provocare la scomparsa di specie arboree dalle aree urbane.

Polveri PM10 e PM2,5

Vengono definite PM10 le particelle di polvere con un diametro aerodinamico inferiore a 10 micrometri mentre con PM2,5 si identificano le particelle con diametro inferiore a 2,5 micrometri. La polvere è una miscela fisico-chimica complessa, composta sia da componenti primarie, emesse direttamente dalla fonte, sia da componenti secondarie formatesi successivamente. Le fonti possono essere di origine naturale o antropica (ad es. fuliggine, processi di combustione, fonti naturali ed altro). La sua composizione risulta pertanto molto varia.

<u>Danni causati</u>: Gli studi epidemiologici hanno mostrato una correlazione tra le concentrazioni di polveri in aria e la accentuazione di malattie croniche alle vie respiratorie, in particolare asma, bronchiti, enfisemi. A livello di effetti indiretti inoltre il particolato agisce da veicolo per sostanze ad elevata tossicità, quali ad esempio gli idrocarburi policiclici aromatici.

Benzene (C₆H₆)

Espresso in microgrammi per metro cubo d'aria, è un idrocarburo aromatico incolore, liquido ed infiammabile. Utilizzato come antidetonante nelle benzine, il benzene viene immesso in atmosfera in conseguenza delle attività umane, in particolare dall'uso del petrolio, degli oli minerali e dei loro derivati. La maggior fonte di esposizione per la popolazione deriva dai gas di scarico dei veicoli a motore, in particolare quelli alimentati a benzina - (la sua immissione in aria è dovuta alla combustione incompleta o ad evaporazione); stime effettuate a livello europeo attribuiscono alla categoria di veicoli in premessa più del 70% delle emissioni di benzene.

<u>Danni causati</u>: E' stato accertato che il Benzene è una sostanza cancerogena per l'uomo; con esposizione a concentrazioni elevate, si osservano danni acuti al midollo osseo. Una esposizione cronica può causare la leucemia (casi di questo genere sono stati riscontrati in lavoratori della industria manifatturiera, dell'industria della gomma e dell'industria petrolifera).

LA RETE REGIONALE DI RILEVAMENTO DELLA QUALITA' DELL'ARIA DELLA REGIONE ABRUZZO

Nel corso del 2017 la qualità dell'aria della Regione Abruzzo è stata rilevata tramite 16 stazioni fisse dotate complessivamente di oltre 60 analizzatori automatici in funzione 24 ore su 24, per tutti i giorni dell'anno.

Le stazioni della Rete regionale sono state gestite da ARTA Abruzzo a seguito di stipula di una Convenzione con la Regione Abruzzo che ha affidato all'Agenzia l'incarico anche della validazione dei dati e della loro pubblicazione (D.G.R. n. 708 del 15/11/2016).

La società che si è occupata degli interventi di manutenzione, ordinaria e straordinaria della strumentazione, è stata la Società Project Automation di Monza che ha fornito anche il software di gestione dei dati.

Le analisi di laboratorio necessarie per ulteriori determinazioni di inquinanti sono state svolte periodicamente su campioni prelevati presso le centraline di qualità dell'aria dai Laboratori Chimici dei Distretti Provinciali di L'Aquila, Pescara e Teramo.

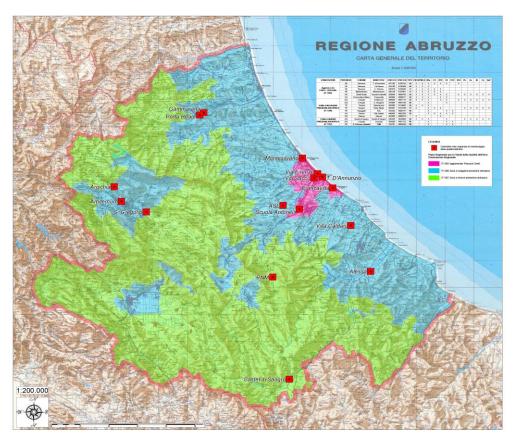
Le informazioni relative al monitoraggio della Qualità dell'Aria sono aggiornate e messe a disposizione del pubblico attraverso il sito web dell'Agenzia (www.artaabruzzo.it), sul sito www.sira.artaabruzzo.it oltre ad essere inviate quotidianamente agli Enti Locali.

1. Caratterizzazione della Regione - ZONIZZAZIONE

Ai fini della valutazione della qualità dell'aria l'intero territorio nazionale è suddiviso in <u>zone</u> ed agglomerati.

La zonizzazione è quindi il presupposto su cui si organizza l'attività di valutazione della qualità dell'aria ambiente che viene condotta utilizzando determinati siti fissi di campionamento (c.d. "centraline") e determinate tecniche di valutazione. Tali misurazioni <u>si considerano idonee a rappresentare la qualità dell'aria all'interno dell'intera zona o dell'intero agglomerato.</u>

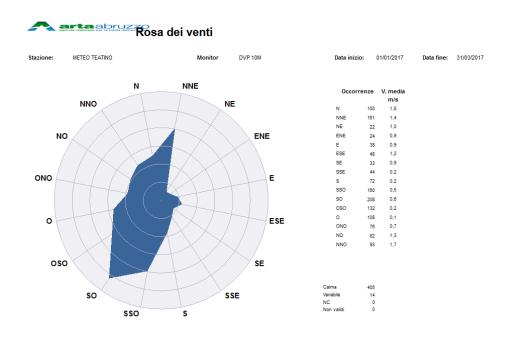
Si riporta di seguito la zonizzazione del territorio della regione Abruzzo ai fini della valutazione della qualità dell'aria. La zonizzazione è stata approvata nel dicembre 2015 con <u>Delibera di Giunta</u> regionale n. 1030 del 15 dicembre 2015 .

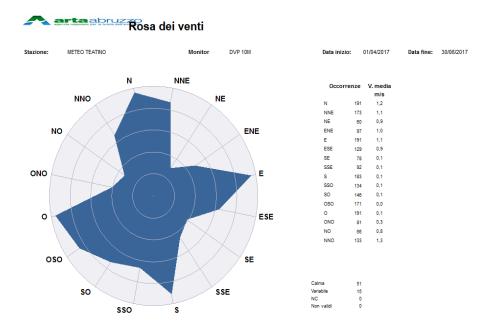

Essa prevede un **agglomerato**, costituito dalla conurbazione di Pescara-Chieti (Cod. IT1305) la cui area si estende nel territorio delle due province ed include i sei Comuni di Chieti, Pescara, Montesilvano, Spoltore, San Giovanni Teatino e Francavilla al mare per una popolazione residente al 2012 di 280.000 abitanti.

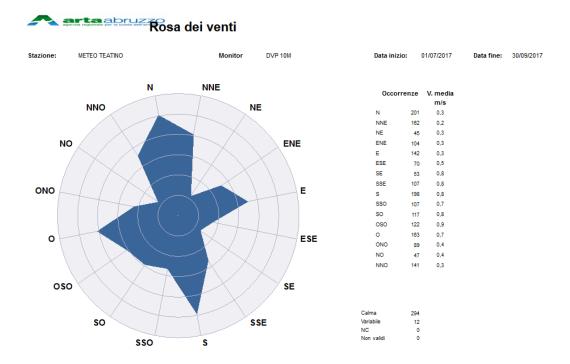
- Il restante territorio abruzzese è stato suddiviso in due zone denominate rispettivamente:
- **Zona a maggiore pressione antropica** (Cod. IT 1306) (circa 800000 ab. Comuni di AQ, TE e altri 109)
- Zona a minore pressione antropica (Cod. IT 1307) (circa 255000 ab, 188 comuni)
 TABELLA RIASSUNTIVA DEGLI ANALIZZATORI PRESENTI ALL'INTERNO DELLE CENTRALINE DI
 RILEVAMENTO DELLA QUALITA' DELL'ARIA DELLA REGIONE ABRUZZO

Nella tabella sottostante vengono riportate, il numero delle centraline presenti in ogni zona e nell'agglomerato, la loro ubicazione e gli inquinanti determinati.

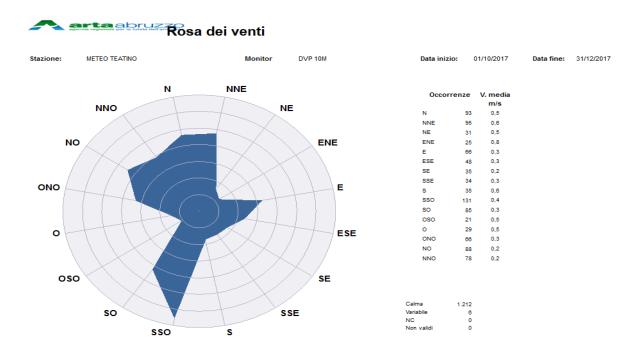
	PROV.	COMUNE	NOME STAZ	UTM-X	UTM-Y	TIPO	PM10	PM2,5	NOx	CO	BTX	03	SO2	Pb	As	Ni	Cd	BaP
	PE	Pescara	T. D'Annunzio	N 4700733 m	E 437102 m	UB	Χ	Χ	χ	Χ	Χ	Χ	Χ					
Agglomerato	PE	Pescara	Via Sacco	N 4700366 m	E 434150 m	UB	Χ		Χ									
CHIETI - PESCARA	PE	Pescara	V. Firenze	N 4702020 m	E 435376 m	UT	Χ	Χ	χ	Χ	Χ							
(IT 1305)	PE	Montesilvano	Montesilvano	N 4707801 m	E 430126 m	UT	Χ	Χ	χ	Χ	Χ							
	CH	Chieti Scalo	Scuola Antonelli	N 4688783 m	E 429050 m	UB	Χ	Χ	χ		Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
	CH	Francavilla al Mare	Francavilla	N 4697015 m	E 429050 m	UB	Χ	Χ	Χ		Χ	Χ						
	AQ	L'Aquila	Amitemum	N 4691713 m	E 366938 m	UB	Χ	Χ	χ		Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
ZONA A	AQ	S Gregorio	S Gregorio	N 4687738 m	E 375604 m	SB			χ		Χ	Χ						
MAGGIORE	TE	Teramo	Gammarana	N 4724660 m	E 395690 m	UB		Χ	χ		Χ							
PRESSIONE ANTROPICA	TE	Teramo	Porta Reale	N 4723748 m	E 394297 m	UT	Χ		χ	Χ				Χ	Χ	Χ	Χ	Χ
(IT 1306)	PE	Cepagatti	ASL	N 4690147 m	E 423332 m	RB			χ		Χ	Χ						
	CH	Ortona	Villa Caldari	N 4682708 m	E 446950 m	SB			Χ	Χ	Χ	Χ						
	CH	Atessa	Atessa	N 4665673 m	E 453840 m	Ι	Χ			Χ	Χ							
ZONA A MINORE	AQ	Castel di Sangro	Castel di Sangro	N 4625609 m	E 425526 m	SB	Χ	χ	Χ	Χ		Χ		Χ	Χ	Χ	Χ	χ
PRESSIONE ANTROPICA	AQ	L'Aquila	Arischia	N 4697123 m	E 364389 m	RB			χ		Χ	Χ						
(IT 1307)	PE	S.Eufemia a Maiella	PNM	N 4663534 m	E 419701 m	RB			Χ		Χ	Χ						


Di seguito la cartina della Regione Abruzzo con indicate le posizioni delle centraline.

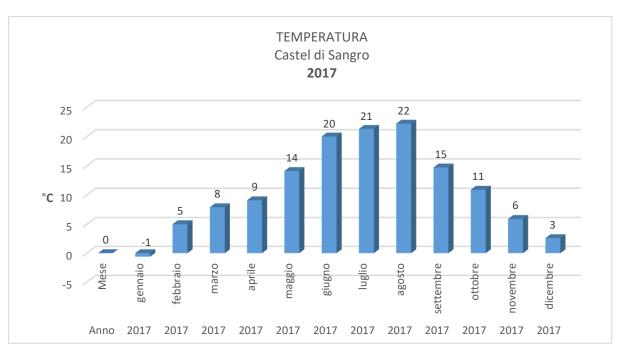


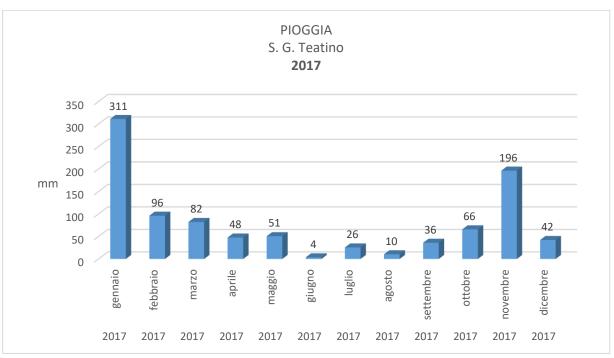


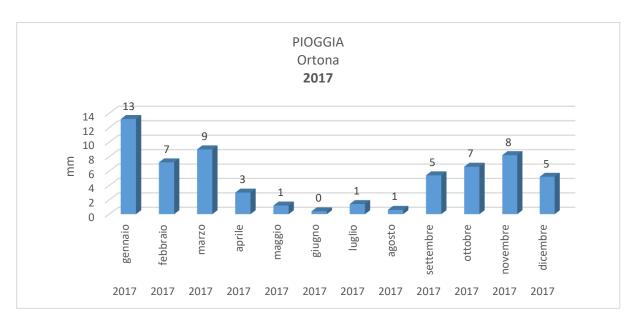
RISULTATI 2017


Di seguito vengono riportate le rose con indicate le direzioni prevalenti dei venti . La stazione di riferimento è quella di S.G. Teatino. Questa centralina meteo è ubicata all'interno della'gglomerato Chieti- Pescara

Dall'esame delle quattro rose dei venti, una per stagione, si evidenzia che durante tutto l'anno 2017 solo nel periodo gennaio marzo la direzione prevalente è stata SUD-OVEST.




Di seguito vengono indicate le temperature medie mensili. Vengono riportate le temperature misurate in almeno una centralina presente nell'agglomerato (S.G. tetatino), nella zona a maggiore pressione antropica (Ortona) e a minore pressione antropica (C. di Sangro).


Vengono forniti anche i valori dei mm di pioggia raccolti nelle stesse centraline nel 2017. I fattori, direzione del vento, velocità e pioggia contribuiscono ovviamente alla riduzione dell'inquinamento atmosferico.

Si riportano di seguito i valori di riferimento che il Decreto Legislativo 13 Agosto 2010, n.155 indica per le sostanze inquinanti.

OZONO

Inquinante	Nome limite	Indicatore statistico	Valore
	Soglia di informazione	superamento del valore orario	180 μg/m³
	Soglia di allarme	superamento del valore orario	240 μg/m³
	Obiettivo a lungo termine per la protezione della salute umana	Max giornaliero della Media mobile 8h	120 µg/m³
O ₃	Valore obiettivo per la protezione della salute umana	Max giornaliero della Media mobile 8h	120 μg/m³ da non superare per più di <u>25</u> giorni all'anno come media su 3 anni
	Valore obiettivo per la protezione della vegetazione	AOT40, calcolato sulla base dei valori orari da maggio a luglio	18000 μg/m³h da calcolare come media su 5 anni
	Obiettivo a lungo termine per la protezione della vegetazione	AOT40, calcolato sulla base dei valori orari da maggio a luglio	6000 μg/m³ · h

BIOSSIDO DI ZOLFO

Inquinante	Nome limite	Indicatore statistico	Valore
	Livello critico per la protezione della vegetazione	Media annuale e Media invernale	20 μg/m³
	Soglia di allarme	superamento per 3h consecutive del valore soglia	500 μg/m³
SO ₂	Limite orario per la protezione della salute umana	Media 1 h	350 μg/m³ da non superare più di <u>24</u> volte per anno civile
	Limite di 24 ore per la protezione della salute umana	Media 24 h	125 μg/m³ da non superare più di <u>3</u> volte per anno civile

OSSIDI DI AZOTO

Inquinante	Nome limite	Indicatore statistico	Valore
NO _X	Livello critico per la protezione della vegetazione	Media annuale	30 μg/m³
	Soglia di allarme	superamento per 3h consecutive del valore soglia	400 μg/m³
NO ₂	Limite orario per la protezione della salute umana	Media 1 h	200 μg/m³ da non superare più di <u>18</u> volte per anno civile
	Limite annuale per la protezione della salute umana	Media annuale	40 μg/m³

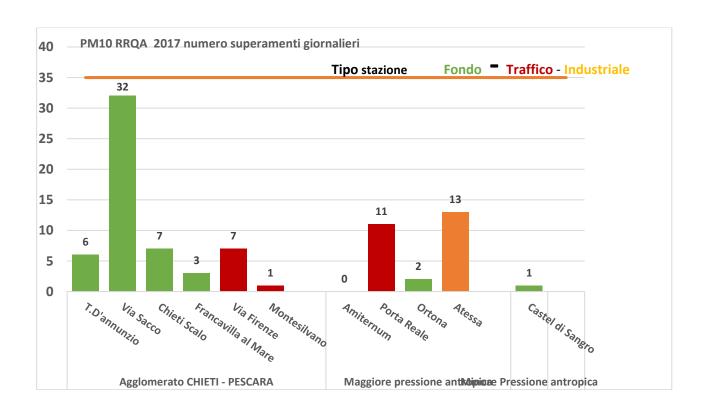
MONOSSIDO DI CARBONIO

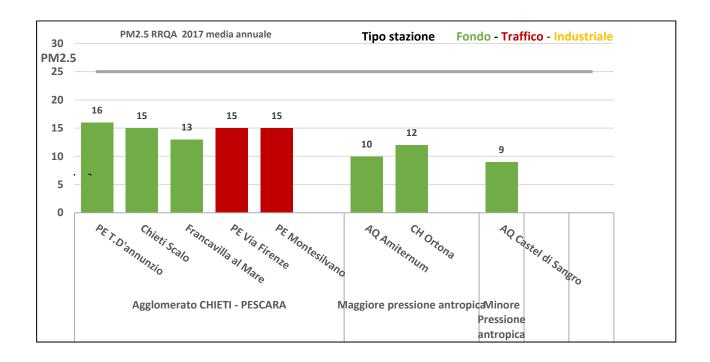
Inquinante Nome limite		Indicatore statistico	Valore		
СО	Limite per la protezione della salute umana	Max giornaliero della Media mobile 8h	10 mg/m ³		

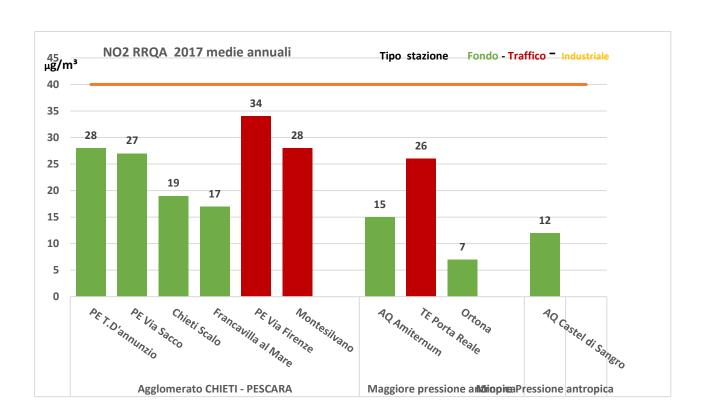
PARTICOLATO ATMOSFERICO

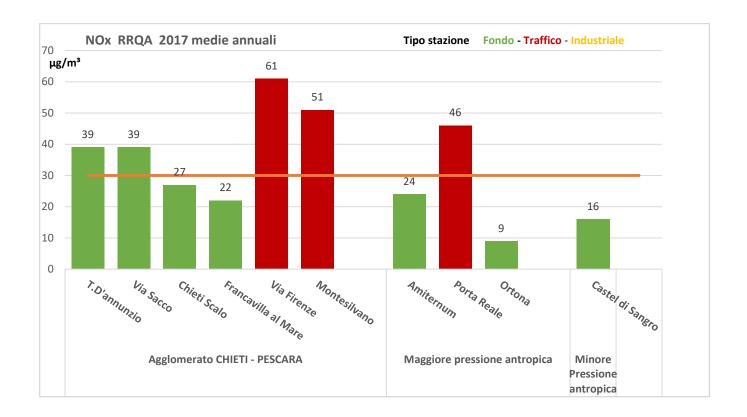
Inquinante	Nome limite	Indicatore statistico	Valore		
PM10	Limite di 24 ore per la protezione della salute umana	Media 24 h	50 μg/m³ da non superare più di <u>35</u> volte per anno civile		
1 11110	Limite annuale per la protezione della salute umana	Media annuale	40 μg/m³		
PM2.5	Valore limite per la protezione della salute umana	Media annuale	25 μg/m³ (in vigore dal 1° gennaio 2015) MDT per l'anno 2014 = 1 μg/m³		

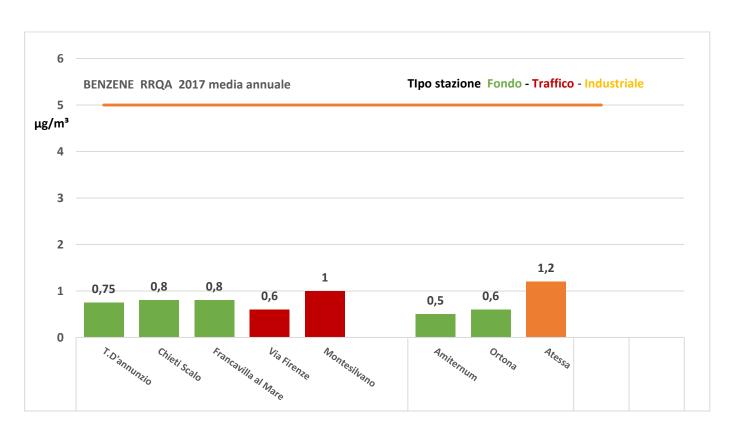
BENZENE


Inquinante	Nome limite	Indicatore statistico	Valore
C ₆ H ₆	Limite annuale per la protezione della salute umana	Media annuale	5.0 μg/m³


L'ANALISI DEI SINGOLI INQUINANTI ATMOSFERICI


Di seguito vengono riportati per tutte le centraline, in forma grafica, i valori medi annuali del 2017 per ciascun inquinante.


PARTICOLATO ATMOSFERICO - PM10



Ciascuna stazione di misura, sia essa da traffico che di fondo, rappresenta un tipo di livello di esposizione della popolazione alle sostanze analizzate.

Le centraline da traffico rappresentano le <u>concentrazioni più elevate</u> degli inquinanti alle quali la popolazione può trovarsi esposta in maniera diretta o indiretta. Le centraline di fondo rappresentano invece la <u>esposizione media</u> della popolazione agli inquinanti misurati.

La media annuale giornaliera di **polveri sottili (PM10**), nella regione Abruzzo non ha mai raggiunto il valore di 40 μ g/m³, che è il limite imposto dalla norma per l'anno civile, in nessuna postazione di misurazione.

Neanche il limite di 35 superamenti annui del valore di 50 μ g/m³ è stato mai raggiunto in nessuna centralina della regione, sebbene a Pescara la cabina di Via Sacco abbia raggiunto un valore molto alto di superamenti.

Il **PM 2,5** del 2017 ha lo stesso andamento del particolato sottile. Il valore medio in tutte le centraline è risultato praticamente simile in ciascuna zona del territorio regionale e comunque sempre inferiore al valore obiettivo di 25 μg/m³ da raggiungere come media annuale.

Il valore medio di 40 μg/m³ del <u>Biossido di Azoto</u> da non superare nell'anno civile, è stato rispettato in tutte le centraline. Anche in questo caso si evidenzia che i valori medi riscontrati nell'agglomerato risultano più elevati rispetto a quelli registrati nella zona a maggiore pressione antropica e a minore pressione antropica.

Il valore annuale di **Ossidi di Azoto (NOx)** di 30 μg/m³, previsto dalla norma come <u>livello critico per</u> <u>la vegetazione</u>, non è stato superato in tutte le centraline ma solo in quelle dell'agglomerato e nella centralina di traffico di Teramo (zona a maggiore pressione antropica).

Esaminando i valori mensili del **Benzene**, (inquinante generato quasi esclusivamente dal traffico veicolare) si osserva che il valore limite di $5 \mu g/m^3$ per questo pericoloso inquinante non è mai stato raggiunto e i valori medi dell'anno sono risultati tutti molto bassi.

Per quanto riguarda l' **Ozono** esso non viene misurato nelle stazioni di traffico, urbane, in quanto i gas esausti reagiscono con l'ozono riducendone la concentrazione.

In questo anno 2017, nei mesi di maggio, giugno, luglio e agosto, la meteorologia ha registrato valori elevati di temperatura e di stabilità atmosferica, condizioni ideali per avere, valori elevati dei principali indicatori statistici dell'ozono, come è stato infatti misurato.

Quest'anno, fra il 7 luglio ed il 2 agosto sono stati rilevati n.4 superamenti della soglia di informazione prevista dalla normativa (concentrazione oraria >180 µg/m³).

Nella tabella seguente indichiamo i superamenti di soglia registrati nel 2017 presso le Stazioni di Via Sacco a Pescara, S. Eufemia a Maiella e L'Aquila S. Gregorio:

	,	1 - 3	
STAZIONE	20/07/2017	21/07/2017	02/08/2017
Via Sacco			191 µg/m³ (ore 16:00)
Via Sacco			183 µg/m³(ore 17:00)
S. Eufemia a		182 μg/m³ (ore 15:00)	
Maiella			
L'Aquila	183 μg/m³ (ore 19:00)		
S. Gregorio			

Ozono – max oraria

I valori misurati degli inquinanti **Monossido di Carbonio (CO)** e **Anidride Solforosa (SO₂)** sono sempre stati ampiamente al di sotto dei corrispondenti valori limite in tutte le stazioni e per tutto il periodo dell'anno.